A geometry-based generic predictor for catalytic and allosteric sites.

نویسندگان

  • Simon Mitternacht
  • Igor N Berezovsky
چکیده

An important aspect of understanding protein allostery, and of artificial effector design, is the characterization and prediction of substrate- and effector-binding sites. To find binding sites in allosteric enzymes, many of which are oligomeric with allosteric sites at domain interfaces, we devise a local centrality measure for residue interaction graphs, which behaves well for both small/monomeric and large/multimeric proteins. The measure is purely structure based and has a clear geometrical interpretation and no free parameters. It is not biased towards typically catalytic residues, a property that is crucial when looking for non-catalytic effector sites, which are potent drug targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis

Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition...

متن کامل

Binding Leverage as a Molecular Basis for Allosteric Regulation

Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs...

متن کامل

Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.

An artificial phosphodiesterase (1) bearing two kinds of metal binding sites, a catalytic site and a regulatory bipyridine site showed a unique allosteric transition in the catalytic activity against the metal concentration.

متن کامل

Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase.

F(1) ATPase, a rotary motor comprised of a central stalk (gamma subunit) enclosed by three alpha and beta subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites re...

متن کامل

Regulation of photoreceptor phosphodiesterase catalysis by its non-catalytic cGMP-binding sites.

The photoreceptor 3':5'-cyclic nucleotide phosphodiesterase (PDE) is the central enzyme of visual excitation in rod photoreceptors. The hydrolytic activity of PDE is precisely regulated by its inhibitory gamma subunit (Pgamma), which binds directly to the catalytic site. We examined the inhibition of frog rod outer segment PDE by endogenous Pgamma, as well as by synthetic peptides corresponding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2011